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Abstract
Voice similarity can be assessed through acoustic analysis,

perceptual judgments by human listeners, and the recent ad-
dition of automatic speaker verification systems. However, a
comparison across the similarity judgments made from acous-
tics, listener perception, and deep neural network (DNN) based
speaker verification systems has not yet been made. This project
fills this gap by comparing acoustic similarity scores generated
from 24 acoustic dimensions and verification scores generated
by seven pretrained speaker verification models using the We-
speaker toolkit to perceptual similarity assessed by human lis-
teners in an AX discrimination task and a (dis)similarity rat-
ing task. Results suggest verification similarities correlate with
acoustic similarities, but not with human perceptual similari-
ties when controlled for talker pair, indicating the correlation
between listeners and speaker verification models happens at a
gross-phonetic level rather than a fine phonetic level.
Index Terms: speaker recognition, human-computer interac-
tion, computational paralinguistics

1. Introduction
What do we mean when we say two voices are similar? Voice
similarity can be estimated through an assessment of acoustic
similarity or judged perceptually by human listeners. Although
perceptual similarity generally correlates with acoustic similar-
ity [1, 2, 3, 4, 5], not all acoustic measurements can equally
predict perceptual similarity of voices [6, 7]. For instance, lis-
teners often rely more on f0 than other acoustic dimensions
for voice similarity judgements [3, 4]. The imprecision in the
alignment between acoustic and perceptual similarity is not sur-
prising given that listeners do not have direct access to speech
acoustics (for an overview see [8]). Moreover, perceptual sim-
ilarity can also be affected by listener experience such as voice
familiarity [9, 10] and speaking style [11, 12].

The ongoing discussion of how to accurately and efficiently
assess voice similarity has been crucial for tasks such as voice
parade and ear-witness identification in forensic linguistics [13]
and voice actor casting [14]. Acoustic similarity itself does not
address the similarities listeners perceive, but obtaining percep-
tual similarity judgements is often time-consuming and the re-
sults are prone to influence by the choice of stimuli. The de-
velopment of automatic speaker recognition introduced another
option for such assessment [15, 14]. It is unclear whether the
similarity ratings generated by automatic speaker recognition
systems merely reflect acoustic similarities or develop abstrac-
tions at a higher level that resemble human perception of voice
similarity.

Automatic speaker recognition can be divided into speaker
identification tasks and speaker verification tasks. Speaker ver-

ification tasks can be considered as a specific type of open-
set speaker identification task, meaning that it involves novel
speakers not present in the training data [16]. This study fo-
cuses on text-independent speaker verification tasks, which per-
form verification regardless of what was said or the phonolog-
ical input and focus on features that are indicative of speakers’
physiology and behavioural characteristics. These features are
represented as speaker embeddings in automatic speaker recog-
nition. Before the incorporation of deep neural network (DNN),
i-vector was the common type of speaker embeddings used in
speaker verification, which reduces the dimensionality of in-
put acoustic signals to a constant length that captures speaker-
specific characteristics. Currently, DNNs are used to learn other
types of speaker embeddings in lieu of the i-vectors, but the
benchmark DNN architecture has not been established. The
common DNN representations include d-vectors, x-vectors and
r-vectors (for a review, see [17]).

A few studies compared human perceptual similarity to au-
tomatically generated similarities by speaker verification sys-
tems (henceforth “verification similarity”). [18] showed that
human perceptual similarities correlate with automatic similar-
ities for male voices that are judged to be “similar” by an i-
vector-based system, while female voices showed no correla-
tion. [19] found positive correlations between perceptual sim-
ilarity and verification similarities when judging speech in En-
glish for both English listeners and German listeners. In a
more recent study, [20] further showed strong correlations be-
tween perceptual and verification similarities within and across
dialects for male voices, especially when the speaker embed-
dings consisted of automatically extracted perceptually rele-
vant phonetic features. [21] found that the correlations be-
tween verification and perceptual similarities can be affected
by task designs (e.g. speaker clustering, lineup and binary-
decision tasks). Specifically, [22] showed that perceptual simi-
larities had a significant correlation with automatic similarities
measured using Cosine Distance Scoring for an i-vector-based
speaker verification model in a clustering task. [23] compared
human performances to i-vector-based speaker verification sys-
tems in AX discrimination tasks of female voices with matched
and mismatched speaking styles, showing a weak correlation
between perceptual and verification scores. Humans always
outperformed speaker verification systems except for the style-
mismatched condition.

Notice that previous comparisons of perceptual similarity
to verification similarity were made without consideration of
acoustic similarity. This poses a question: how much can we
attribute the correlation between human and speaker verification
systems to acoustic similarity? As mentioned before, human
perception of voice similarity does not correlate perfectly with
acoustic similarity. How much would this mismatch be reflected



in verification scores, if at all? This project aims to explore this
relationship between acoustic similarity, perceptual similarity,
and verification similarity in DNN speaker verification models.

2. Materials: SpiCE corpus
The English portion of the Speech in Cantonese and En-
glish (SpiCE) corpus is used in this study [24]. SpiCE is
an open-access corpus of conversational speech from 34 early
Cantonese-English bilinguals (17 self-identified female, 17 self-
identified male; Age range: 19 - 34). The recordings were made
with a 44.1 kHz sampling rate and 16-bit resolution. Only fe-
male participants were used in this study.

3. Acoustic similarity measures
The acoustic similarity scores were taken from [25], where a de-
tailed description of the measurement and calculation for each
acoustic dimension can be found. To summarise, a total of 24
acoustic measurements including f0, F1, F2, F3, F4, H1∗-H2∗,
H2∗-H4∗, H4∗-H2kHz∗, H2kHz∗-H5kHz, CPP, Energy, SHR
and their moving standard deviations (s.d.s), calculated for each
measure to capture dynamic changes, were analyzed. These
acoustic measures were selected based on [26], and are the per-
ceptually validated measures of the psychoacoustic model of
the voice [27]. Principle component analyses (PCA) on these
24 acoustic dimensions were performed to reduce the dimen-
sionality of acoustic measurements. A pairwise numerical com-
parison of PCAs was then performed using the canonical corre-
lation analysis (CCA). CCA provides redundancy indices that
represent a metric of redundancy between the two PCAs. These
redundancy indices are used as acoustic similarity scores in the
analysis. Only within-English-cross-talker redundancy indices
for female talkers were used for acoustic similarities in this
study. Higher redundancy indices indicate higher similarity be-
tween voices.

4. Listener experiment
4.1. AX discrimination task

Participants: 530 participants with heterogeneous language
backgrounds from the University of British Columbia (UBC)
completed the task for partial course credit. The student popu-
lation at UBC is comprised of a majority of early simultaneous
bilinguals who have English as the most common dominant lan-
guage [28].
Materials: Thirty-six 1-2 second (s) intervals of spontaneous
interview speech were extracted for each talker. None of these
items exhibited an observable disfluency or a codeswitch.
Procedure: The task was presented online via jsPsych. Partic-
ipants were presented with two speech samples that were sepa-
rated by a 1500 millisecond interstimulus interval. Participants’
task was to determine whether the two speech samples came
from the same or different speakers by pressing keys ‘f’ and ‘j’
on their keyboard; key assignment was counterbalanced across
listeners. Voice samples were accompanied by a yellow cir-
cle (voice 1) and a blue circle (voice 2) to facilitate the pars-
ing of the speech as two utterances. The trial advanced if no
same/different response was entered after 5000 ms. Participants
were exposed to a total of 186 trials. Listeners were randomly
assigned to one of 55 different lists which contained exhaustive
comparisons for 5 different female voices, in addition to the
occasional presentation of other voices. In order to maximize
the talker pairings, the number of same and different talker tri-

als was unequal. Listeners were presented with the following
trial types: different talker different language (n = 42), different
talker same language (n = 82), same talker different language (n
= 20), same talker same language (n = 42).

4.2. (Dis)similarity rating task

Participants: 64 participants from the same population as the
AX task completed the task for partial course credit.
Materials: A selection of 1.5-2 second (s) intervals of spon-
taneous interview speech were extracted for each talker. From
these items, the longest fluent interval without a codeswitch or
disfluency was selected, resulting in materials that ranged from
1.64 - 2 s in duration, and all items had continuous speech dur-
ing that interval. Because it is impractical to present all pair-
wise voice samples to listeners, separate lists (n = 174) contain-
ing 240 trials were created that each exhaustively compared 7
randomly selected voices in pairwise combinations within and
across languages. Within-voice comparisons were not made and
lists were not balanced by talker gender.
Procedure: Listeners were presented with two voice samples
in succession with a 2 s interstimulus interval with the option
of playing each stimulus a second time. Listeners’ task was to
compare the (dis)similarity of the voices on a visual-analogue
scale with endpoints labelled as the same or different, which
were counterbalanced across listeners. The cursor began at the
midpoint landmark for each trial.

5. Neural network experiment
5.1. Model description

Pretrained speaker verification models from Wespeaker [29]
were used to rate voice similarities. Wespeaker is an open-
source speaker-embedding learning toolkit designed for re-
search and production purposes. To balance the diver-
sity in model architectures, parameter counts and training
methods, we evaluated seven pretrained speaker verifica-
tion models: CAM++, CAM++LM, ResNet34, ResNet34LM,
ResNet152LM, ResNet221LM, ResNet293LM. All were
trained using the VoxCeleb corpus [30, 31], which contains
around 2800 hours of speech from over 6000 celebrities with
various backgrounds and accents extracted from YouTube.
These pretrained models were trained on either one of two
model architectures: ResNet and CAM++. ResNet models
apply the original ResNet [32] to the speaker verification do-
main [33], with fully convolutional blocks and residue connec-
tions. Despite its simplicity, ResNet remains a strong baseline
in all speaker verification benchmarks. CAM++ [34] is a state-
of-the-art speaker verification model that incorporates context-
aware masking (CAM) on top of the ResNet blocks to refine
the speaker representations through the gating mechanism. The
model variants with the LM suffixes further went through large-
margin finetuning to enhance performance.

5.2. Materials for automatic experiment

All materials used for the neural network experiment were from
the interview section of SpiCE corpus. Since pretrained We-
speaker speaker verification models recommend using audio
stimuli longer than 5 seconds, sample audio files with both
shorter duration (range: 1.64 - 2s) and longer duration (range:
4.75 - 5.77s) were used for the automatic experiment. The short-
est stimuli were the same used in the listener experiment as de-
scribed in 4.2. The longer stimuli were manually extracted to
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Figure 1: Correlation and the Spearman’s rank correlation co-
efficients between normalized perceptual similarity scores (x-
axis, 1: most similar) and normalized acoustic similarity scores
(y-axis, 1: most similar) grouped by listener task (green/solid
line: AX discrimination task; orange/dotted line: (dis)similarity
rating task). The distributions of scores are shown on the
marginal histograms.

avoid the accidental inclusion of long periods of silence. All
speaker verification models convert speech stimuli into fixed-
dimensional speaker embeddings and compute the cosine simi-
larity between pairs of speaker embeddings as a proxy for voice
similarity.

6. Results
All data manipulation and visualization were done using the
{tidyverse} package [35] and all Bayesian models were fitted in
Stan using the {brms} package [36] in R [37]. For all Bayesian
models below, samples were drawn from the posterior distri-
bution using a four-chain Hamiltonian Monte-Carlo sampling
(3000 iterations, 1000 warm-ups). Weakly informative priors
were used for all parameters. The mean of the posterior distri-
bution, the 95% credible interval (CrI), and the probability of
direction (PD) are reported. A CrI that does not encompass 0
suggests a meaningful effect and a PD greater than 95% sug-
gests a probable direction of effect [38].

6.1. Data wrangling

All acoustic similarity scores (range: 0.636 - 0.951) were nor-
malized on a 0 to 1 scale. For the AX discrimination task re-
sults, the percentage of “same” responses for each speaker pair
was calculated for each listener and then averaged across all lis-
teners. All perceptual dissimilarity ratings were converted to
similarity ratings by subtracting from 100. The top and bottom
5% scores for each speaker pair were removed since listeners
might not use the rating scale the same as one another (some
might only rate the voices from 30 to 70 while others might
use the endpoints). All converted perceptual similarity scores
were then normalized by listener to a 0 to 1 scale, and averaged
across all listeners for each speaker pair. All verification simi-
larity scores were normalized by model type to a 0 to 1 scale.

6.2. Acoustic similarity and perceptual similarity

Figure 1 shows the correlation and Spearman’s rank correlation
coefficients between normalized perceptual similarity scores (x-
axis, 1: most similar) and normalized acoustic similarity scores

(y-axis, 1: most similar) grouped by listener task. The per-
ceptual similarity scores for the AX discrimination task have a
Spearman’s rho of 0.33, suggesting a moderate correlation with
the acoustic similarity scores. The perceptual similarity scores
for the (dis)similarity rating task have a Spearman’s rho of 0.13,
suggesting a negligible correlation with the acoustic similarity
scores.

Two Bayesian mixed-effect linear regression models were
fitted for each listener task. One was fitted with the acoustic
similarity scores as the outcome variable and the by-listener
normalized similarity ratings as the predictor variable; the other
was fitted with the dummy-coded AX similarity decisions as the
predictor variable (same vs. different; reference level: same).
Both models included by-talker and by-listener random inter-
cepts. The Bayesian model outputs showed little evidence for
the correlation between similarity ratings and acoustic similar-
ity scores (β = 0.01, CrI = [-0.01, 0.04], PD = 87.14%) but
strong evidence for a positive correlation between AX similar-
ity decision and the acoustic similarity scores (β = 0.03, CrI =
[0.02, 0.03], PD = 100%).

6.3. Verification score and acoustic similarity

A Bayesian mixed-effect linear regression model was fitted with
the verification score as the outcome variable and predictor vari-
ables of acoustic similarity scores, dummy-coded duration of
stimuli (short vs. long, reference level: short) and their in-
teraction. The Bayesian model provides strong evidence that
verification similarity has a positive correlation with acoustic
similarity (β = 0.09, CrI = [0.05, 0.13], PD = 99.99%). Longer
audio stimuli, in general, receive higher verification similarity
scores (β = 0.10, CrI = [0.07, 0.12], PD = 100%). There is also
weak evidence for the interaction effect between stimuli dura-
tion and acoustic similarity scores: longer stimuli exhibited a
weaker correlation between acoustic and verification scores (β
= -0.04, CrI = [-0.09, 0.01], PD = 95.64%). The green lines in
Figure 2 showed the predicted verification (y-axis, 1: most sim-
ilar) score and its correlation with acoustics similarity (x-axis,
1: most similar).

6.4. Verification score and perceptual similarity

6.4.1. Verification score and (dis)similarity rating

Two Bayesian mixed-effect linear regression models were fitted
with the verification similarity as the outcome variable and pre-
dictor variables of perceptual similarity ratings, dummy-coded
duration of stimuli (short vs. long, reference level: short) and
their interaction. Both Bayesian models included by-listener
and by-model random intercepts. The difference lies in the in-
clusion of by-talker random intercept. The Bayesian model with
by-talker random intercept showed little evidence for the corre-
lation between verification scores and similarity ratings (β =
0.00, CrI = [-0.00, 0.01], PD = 80.62%) regardless of interac-
tion with stimuli duration (β = -0.01, CrI = [-0.02, 0.00], PD =
89.84%). The Bayesian model without by-talker random inter-
cept showed strong evidence for a positive correlation between
verification scores and similarity ratings (β = 0.05, CrI = [0.04,
0.06], PD = 100%) despite interaction with stimuli duration (β =
0.01, CrI = [-0.01, 0.02], PD = 72.72%). The purple lines in Fig-
ure 2 showed the predicted verification scores (y-axis, 1: most
similar) and their correlation with perceptual similarity ratings
(x-axis, 1: most similar). The dotted lines are posterior draws
from the Bayesian model without by-talker random intercept.
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Figure 2: Predicted verification score (y-axis, 1: most similar) drawn from the posterior distribution in relation to acoustic similarity
(x-axis, green line, 1: most similar), AX decision (x-axis, orange line, 1: most similar) and similarity rating (x-axis, purple line, 1:
most similar) grouped by stimuli duration (rows) and speaker verification model type (columns). The dotted lines are posterior draws
from the mixed-effect model with by-talker random intercept. The solid lines are posterior draws from the mixed-effect model without
by-talker random intercept.

6.4.2. Verification score and AX similarity decisions

Two Bayesian mixed-effect linear regression models were fit-
ted with the verification score as the outcome variable and pre-
dictor variables of dummy-coded AX similarity decision (same
vs. different, reference level: same), dummy-coded duration
of stimuli (short vs. long, reference level: short) and their in-
teraction. Both Bayesian models included by-listener and by-
model random intercepts but only one included a by-talker ran-
dom intercept. The Bayesian model with by-talker random in-
tercept showed no evidence for the correlation between AX
similarity decision and verification similarity (β = 0.00, CrI
= [-0.00, 0.00], PD = 51.78%) regardless of interaction with
stimuli duration (β = -0.00, CrI = [-0.00, 0.00], PD = 52.58%).
The Bayesian model without by-talker random intercept showed
strong evidence for a positive correlation between AX similarity
decision and verification similarity (β = 0.02, CrI = [0.02, 0.03],
PD = 100%). Longer stimuli samples elicit a stronger positive
correlation as seen from the interaction effect (β = 0.02, CrI =
[0.02, 0.03], PD = 100%).

7. Discussion and Conclusion
This project again showed that human perception of voice simi-
larity does not always correlate with acoustic similarity and can
be task-dependent. The correlation between perceptual simi-
larity and acoustic similarity only surfaces in the results of the
AX discrimination task but not to the same extent in similarity
rating data.

For speaker verification systems, verification similarities
correlate with acoustic similarity with or without control for
talker pairs. However, when controlled for talker pairs, the cor-
relation between verification similarities and perceptual simi-
larities disappears, regardless of the listener’s tasks. This sug-
gests that the positive correlation observed between verification

similarities and perceptual similarities could be dragged by the
agreements between speaker verification systems and human
listeners when the talkers in comparison are either very simi-
lar or very different. Controlling for talker pairs indirectly con-
trols for the gross-phonetic details between talkers. When these
gross-phonetic details are controlled, we can evaluate whether
speaker verification systems and human listeners react to talker
pairs that have acoustic overlap in a similar manner. In this
case, the similarity between talkers requires judgements based
on fine phonetic details. Since our results suggest the correla-
tion between verification similarities and perceptual similarities
disappear when controlled for talker pairs, we can infer that
the verification-perception correlation only exists at a gross-
phonetic level. Relating to previous comparisons of verification
similarities and perceptual similarities, this project adds to the
interpretation of their correlation: speaker verification systems
and human listeners make similar judgements of voice similar-
ity at the gross-phonetic level, but not at the fine phonetic level.

To summarise, this study underscores the potential discrep-
ancies introduced by different evaluation metrics in assessing
voice similarity. Perceptual similarities determined by human
listeners can be task-dependent and do not always correlate with
acoustic similarity. Verification similarities, while correlating
with acoustic similarity, do not capture human judgments at the
fine-phonetic level. Therefore, it is crucial to consider the spe-
cific aspects of voice similarity that each assessment method
reflects. For instance, when evaluating the feasibility of devel-
oping automatic speaker recognition systems for forensic ap-
plications, it is important to recognize that verification similar-
ities might not accurately reflect human judgments at a fine-
phonetic level. To minimize the influence of varying evaluation
metrics, we advocate for transparent and detailed descriptions
of the assessment methods used when reporting evaluations of
voice similarity.
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